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THE SOLUTION OF CONTACT PROBLENS OF CREEP THEORY 
FOR COMBINED AGEING FOUNDATIONS* 

E.V. KOVALEXKO 

Solutions are presented of certain plane and axisymmetric contact problems 
on the frictionless impression of a rigid stamp into a two-layered ageing 
viscoelastic foundation. It is assumed that the upper layer is thin 
relative to the contact domain, and inhomogeneously ageing. The rheological 
properties of the lower layer are described by the equations of linear 
creep theory for ageing materials. The layers are mutually rigidly adherent. 
The contact domain does not change with time. Depending on the relationships 
between the moduli of the instantaneous elastic strains of the layers, the 
mixed problems reduce to integral equations of the first or second kinds 
containing Fredholm and Volterra operators. An analytic method is proposed 
for solving such equations which enables an expansion to be obtained for 
the fundamental characteristics of the contact interaction for a force 
varying with time in an arbitrary manner and acting on the stamp. Cases 
are investigaged for the artificial and natural ageing of a two-layer 
foundation. 

1. We shall consider the problem using the example of axisymmetric problems, keeping in 
mind that it is possible to transfer to plane analoguesoftheseproblemsby the correspondence 
principle /l/. Let a thin layer of thickness O.< y.< h (huW1<l) be rigidly adherent to a 
surface layer of thickness H lying frictionless on a non-deformable foundation (or connected 
to it). We assume that a force P(t) is impressed without friction by a stamp of circular 
planform on the upper boundary of such a composite medium. The surface of the stamp founda- 
tion is given by the function g(r), while the contact domain is determined by the inequality 
O<r<a. 

We will describe the rheological properties of the two-layer foundation by the equations 
of linear creep theory for ageing materials /2, 3/ (we ascribe the numbers n=i,2) to each 
layer from the top down) 
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Here eij(") (1, r, Z) and sij'n'(t. r,z) are strain and stress tensor deviators, 3e(") (t, r, 2) is 
the bulk strain, @)(t,r,z) is the mean hydrostatic pressure, K,(t, T) is the creep kernel 
for the uniaxial state of stress, C,(t,2) is the creep measure , r and z are cylindrical 
coordinates of points of the body, z0 is the time of load application, xl(z) is a function 
of inhomogeneous ageing, -x2(z)=zz is the time of lower layer fabrication, E, and v, are the 
elastic instantaneous strain modulus and Poisson's ratio. We note that since the properties 
of the creep measure C,,(t, z), as well as the creep kernel K,(t,z) and the relaxation R,(t, z) 
(& (t, r) is the resolvent of the kernel K,(t,t)) are elucidated in /2, 3/, we shall not du- 
plicate them here. For simplicity in the subsequent considerations, we will merely assume 
that the hereditary properties of the layer materials are identical, i.e., 

c, (t, q = c, (t -r. 2) = cp, (T)f (t -7) (n = 1, 2) (1.1) 
where q,(z) are functions taking account of the material ageing process and f(t -z) their 
hereditary properties. 

Now using the relative smallness of the thickness of the upper layer (A = ha-l < 1) we 
consider certain relationships between the values of the layer instantaneous elastic strain 
moduli. 

Let 
ere*-1 - Am (const = m > 0; A < 1; en = 0,5E, (1 -v,*)+; n = 1, 2). 
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Then taking the results in /4, S/ and the correspondence principle /2/ in the calculation we 
obtain an integral equation in the contact pressures q(F, t) not known under the stamp. 
Inserting dimensionless variables and the notation 

P* = pa-l, r* = ra-1, t* = fro-l, T* = ‘~~-1 (1.3) 

x1* (4 = x1 (2) z,‘, (1* (F*, t*) = q (r, t) f&-', 6* (t*) ;L= 6 (t) u-l 

g* (r*) = g (r) a+, h = Ha-l, c = 0,5Ae&- (1 - 25) (1 -vi)* 

C,* (t*, T*) = E,C, (t, T), P (tj (a%$” = N (t*) 

(we will omit the asterisk later), we write it in the form 

k(ux, ~j=~~L(.,Jo(ua)J.(n~)du 
0 

(!.4) 

Bere s(t)is the rigid displacement of the stamp, J,(u) is the Bessel function, and the 
form of the function Lf~)is presentedin /6/ for the cases of rigid clamping of the lower face 
of the second layer or its smooth contact with the non-deformable base. 

The quasistatic condition 
1 

N(t)==zn sw(Pv t)dP (1.5) 
0 

must be appended to (1.3). 
we now assume that Ae&-r = D (D = cons& A< l), i.e., the instantaneous stiffness of 

the upper layer is greater than the instantaneous stiffness of the lower layer. In this case, 
a thin layer will work as an inhomogeneously-ageing cover /7/. If it is later assumed that 
the constant D is sufficiently small, then by changing to dimensionless variables and the 
notation (1.2) r we obtain 

(O<r<l, l<ttT<m) 

Tberefore, we have arrived at a contact problem for a homogeneously-ageing viscoelastic 
layer. 

2. We describe the method of solving integral equations (1.3) and (1.6) under the 
assumption that the force N(t) pressing the stamp to the foundation varies with time as 

N (t) = N, + N, (t) (N, = const; N, (t) - 0, t + m) (2.4) 

We initially consider (1.3) and go over to its equivalent integral equation in conformity 
with the scheme elucidated in /B--10/: 

t 

s K?@--74, t-T*)dT (q(p, T)Pk(~, +)dP=w--6~1~ 
1 0 

(r<i,O<ttT) 

(2.2) 

1 

cq(r, I)+ q(p, i)pk(+, +p=W)-g(r) WG’1) 
s 0 

(7 3) 
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We seek the solution of (2.2) in the form /g--11/ 

Then, taking account 

/2, 3/, we obtain 

1 

q(r, t)=qm(r) + q* (r> t), h', =~J+.G (P)& (2.4) 

6 (t) = 6 + LA (t) + 6, (t", (2.5) 

of (1.1) and (1.3) and the properties of the creep measure C,,(t,r) 

A (t) = C, (1, I), A (I) = 0, c, (t, 4 = W @)f (t -d (2.6) 
h 

ii1 @) = +- s qJ1 (T + x1 (z)) dz, F = FL’ - T!2) 
R(i) 

0 

(2.7) 

(2.8) 

The relationship between the Constants 6, and N, is found according to the second 
condition in (2.4) after solving integral equation (2.7) /l/. 

We now require that 

q* (r, t) = q1 (t) + qz (r, t) (2.9) 

s 

1 

Pqz (~9 1) dP = 0, 2n 1 WI (t) dp = ~~10) = N,, (t) 
0 0 

in conformity with the quasi-equilibrium condition (1.5) and the representation (2.1). 
Now, if the expression 

E IPI (t) -4%(i)L s Iti (Pr Q-&(P* I)1 PB(P)dP 

R(')=2&& +)dE, -E~q,(r)R*(~--*,r--C?)d~ 

SK.(L--:..r-e)drfg,(p,r):l(p)dp 
1 0 

is added to and subtracted from the left side of (2.8) (E is as yet an undefined constant), 
then the integral equation (2.8) will be satisfied when the functions q1 (t) and q2 (r, t) will, 
respectively, yield the solutions of the equations 

(c - qlql(t)-qgl(l)l -_eBW(T)I(& r)dt=S*(t)-&(1)- 

flq& O--q~(p~ l)lpa(~)do+ESq,(r)K~(t--r?, r--z)&+ 

~&(f-tp, r-@rjq?(p, r)pB;p)do 

(~ I?; (1.9 I) - qz (r, 1) - f q2 (I.9 1) R, (t, T) dT] f 

i 

(2.10) 

(2.11) 

k” (p’i.. r’i,) = k (p/i., r/i.) - B (0) - R (r) (2.12) 

We note that the kernel k"(x.p) of the form (2.12) is symmetric and possesses the 
property that 
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We introduce 
integrable in the 

c’ fgr(p, t)prk"(+, ;)dpdr=O 
;o 

into the consideration the space L2”(R) of functions that are square 
circfe R:r%< 1 and satisfying the condition 

s rh (r) dr = 0 
0 

ft can be proved that the space Leo(Q) is a complete subspace of La@@. 

Theorem 1. The integral operator 

(2.13) 

(2.14) 

(2.15) 

is a selfadjoint, completely continuous and positive operator acting from L2”(Q) into L,,“(Q). 
Theorem 1 is proved by the scheme in /l/. 
Furthermore, we construct a system of eigenfunctions {k(r)) (a> 1) and its corresponding 

sequence of efgennumbers {&,} of the operator (2.15) by the methods described in /I, lo/. 
By virtue Of TheOr@m 1 this system is orthonormal and complete in LPo (Q) and all pn> 0, where 
II,*O(n-* 00). 

SeleCting the constant E in the second relationship in (2.11) in such a manner that a 
condition of the type (2.14) would be satisfied, i.e., h(r, t)E L1’(Q) in r, we represent 
the functions qz (r, t) and h (r, t) in the form of the following series: 

ga(r* +~&%(lthll(r) (2%) 

Then inserting (2.16) and (2.17) into the integral equation (2.111, and equating 
coefficients of the left and right sides for efgenfunctions of identical number fortheoperator 
x in the relationship obtained, we arrive at the equation 

a,(t)- Sfs&Pf,& t)dr=a,(l)+ -+e(t) (1,<t,<T) 
1 n 

M, (1, 7) = (c + CL,,)-' [CR, (t, r) f pnK, 0 - 4, 7 - tz)l 

whose solution is representable in the form 

e,(t) --an(l) [I + CL+. z)d-rl+ +[e(t)+ $NI',(t~ r)dr] (2.18) 
i 1 

where r,(t, t) is the resolvent of the kernel M,(t, 7) /2/. 
Now, using formulas (2.91, (2.10), (2.16) and (2.18), we find the unknown addition, under 

the stamp, to the settling of the foundation s,(t) and the function qS (r,t) to an accuracy 
of a countable set of constants G(i). We determine the latter by substituting the contact 
stresses q&,1) into the integral equation (2.3) itbe question of the solvability of the 
integral equation (2.31, just as of (2.71, is investigated in /l/) and by executing the 
following manipulation. We supplement the s_ystem (k,(r)) (n>l) of eigenfunctions of the 
operator Hq (2.15) by the element h,(r) ==1/2. Then the sequence of functions {Iz, (r)) (n > 0) 
will be orthonormal and complete in the space L,(Q). We expand the functions g 0% B (&gm (r) 
belonging to L, @)in series in the system 

g(r)= RIOgnhn(rf~ ~(r)=~~~&*~(r) (2.19) 

Series (2.19)converge in the norm, at least, of the space L2(12), and the corresponding 
coefficients belong to the space of quadratically s-able sequences 1% and are determined 
by using the orthonormalcyconditions for the functions @,,(r)}(n> 0) We find from (2-l), 

(2.4), (2.91 and (2.16) 

q(r, 1)== E X&(r), & =-& N(1) (2.20) 
n-0 

x, = d, + a, (1) (n > 1) 
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Taking account of the expansions (2.19) and (2.20)~ and the orthogonalitycondition for 

the system of functions {h,(r)} (n> 0) we obtain from (2.31 

It was here alsotakeninto account that {h,(r)) (n> i) are eigenfunctions of the operator 

(2.15) and satisfy condition (2.14). Now, we find the system of constants a,(1) from the 
first relationship of (2.12) and (2.201. We later determine 6, (t) from (2.10) and the con- 

stant 6 in (2.5) from the second equation in (2.21). 

Theorem 2. The series (2.16) converges uniformly in &*(St) in t in /1, T], while (2.41, 
(2.9) and (2,161 determine the generalized solution of Cl.31 and (1.4). 

without presenting the proof of Theorem 2, we note that it is analogous to that constructed 

in /ll/. 

3. We now Mnsider the solution of integral equation (1.6). For this, as can be seen, 
it is necessary to set &f&7)= caz 0 in the appropriate formulas in Sect-l. Then (2.31, 

(2.61, (2.71, (2.10) and (2.11) are rewritten in the form 

A (t) = ‘pa (1 -z&f (t - I), A (1) = 0 

(3.2) 

we note that the solutions of the integral equations (3.1)-(3.3) already have a singufar- 
ity of square root type at the edge of the contact line (r = i) /6/, unlike the preceding 
case, consequently, it is best to perform further discussion according to the following plan. 
Since the kernel k'(u, fi) (2,121 is symmetric and the equation 

is satisfied (compare with (2.13)), we introduce the space ~~,~,(~) of functions summable 
square in the domain Q and of weight (1 -t)-"' whose integral over 52 is zero. It can be 
shown that L;.n,, (Q) is a complete subspace of the Hilbert space L,,s~,(SZ) that is square 
integrable with weight (1 -@-'" in the domain 52 of functions. Moreover, as above we have 
/l/ the following theorem. 

Theorem 3. The operator Ho @.15), q (r) = 0 (r)lJI-=F is a selfadjoint, completely 
continuous, and positive-definite operator acting in the Hilbert space L;*,,,(Q). 

As is shown in /lo/, we now construct a system of eigenfunctions {k.,,(r)}B$) and its 
corresponding sequence of eigennumbers 
fpj (r) 

{P,,} of the operator H by taking 1/41+ 1 Ppl(fm) 
axe Legendre polynomials). Since by virtue of Theorem 3 the system (h,(r)} is ortho- 

normal and complete in &Z,,(Q) while b> 0. h-0 (~-voc), then further solution of the 
problem reproduces the discussion in Sect.2 with appropriate evident modifications. 

Furthermore, we turn our attention to one circumstance. To write down the integral 
equations of planeanalogu@softheproblems studied, it is necessary to use the following 
correspondence principle 71, 6, 12/. If.the kernel of a Fredholm integral equation of the 
axisymmetric contact problem represented in the form (1.4) is known, then the Fredholm kernel 
of the corresponding plane problem has the form 
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m 

k(Y)=+! L(u) r.0 cos uy du, 
E.--r 

y = - 
h 

0 

(3.4) 

The quasistatics conditions (1.5) is here transformed into the following: 

I, = i q(r, t)dx, Nl (t) = N,(t) e (t) = 5 xq (xv t) dx (3.5) 
-1 -1 

which serve to determine the relationships between 
and a(t) are, respectively, 

N,, (t) and 6 (t), a (t) and E (t). Here E (t) 
the eccentricity of application of the force No(t), and the 

angle of rotation of the stamp. 
As regards the solutions of the integral equations (1.31, (1.61, (3.41, (3.5), the methods 

elucidated in Sects.2 and 3 are applicable. It must just be kept in mind that in finding 
the eigenfunctions of the operator 

by the method in /lo/, a system of orthonormal Legendre polynomials must be taken as coordinate 
elements in the first case, and Chebyshev polynomials of the first kind in the second. 

4. We will analyse (1.3)-(1.5) numerically. Let 

'PI IT+ xt @)I = A,+ A, erp {-B [r + XI @)I) 
Then in agreement with (2.6) 

We assume x1 (z)> 0, i.e., the age of the upper layer grows with height, as occurs if 
the layer is subjected to the influence of external effects (radiation, temperature, etc.), 
namely artificial ageing. In this case O<pgl. If --i<xl(z)<O, i.e., the age of the thin 
layer diminishes with height which is natural ageing, and which corresponds to the process 
of raising the upper layer on the lower, then i < p<eep. Therefore, by changing the parameter 
p within the mentioned limits, the solution of the problem posed can be constructed for any 

functions x1 (z). Moreover, we note that the selection of the time origin can be made available 
so that QSO. 

Numerical computations were performed for the case when g(r)= U (the stamp has a flat 
base): 

N (t) s I; h = 6;~ = 0.2; A, = 0.5522; A, = 4; f (I - t) = 1 - ,-""(t-r) ; L (u) = (ch 224 - i)(sh 2~ + 2~).' 

(values of the parameters B,v and z,, were taken from /13/) and compared with those from 
/13/ in which the integral equation being investigaged (1.3)- (1.5) was solved by the methods 
described in /g-11/. Results of the comparison showed agreement between the numerical values 
of the fundamental characteristics of the problem under consideration with an error not 
exceeding 3%. 

Let us recall certain mechanical deductions. 
When t=i and for any value of the parameter p the foundation will be an elastic 

layer bonded along the upper boundary by an elastic coating of Winkler type /5/. The minimal 
values of the contact pressures (for r = 0) will here be less than those in the case of 
natural ageing, and greater in the case of artificial ageing, while the maximum values (for 
r ='I) will be the reverse, less than the contact stresses for the case of artificial ageing, 
and greater in the case of natural ageing. 

As the natural inhomogeneity grows (as the parameter u grows), the maximum contact 
pressures will diminish while the minimum pressures increase. 

As the artificial inhomogeneity grows, which corresponds to a decrease in the parameter 
p from 1 to 0, the maximum contact pressures will rise while the minimum pressures will 

decrease. 
Settling of the foundation under the stamp 6(t) with time will grow and tend to the limit 

value which will be greater, the larger the parameter 1" 
If the inhomogeneity parameter is 11--l and the layers are fabricated from the very 

same material, while the force acting on the stamp from the flat foundation is independent 
of time, we obtain that the pressure distribution under the stamp will be the same as in the 
analogous elastic problem, i.e., in this case creep exerts no influence on the contact stress 
distribution. 

Let I’ = II. Then the upper layer will work on a type of foundation whose rheological 
properties are subject to the Volterra linear heredity law /la/. 

The version k& 1 ,P corresponds to the case of piecewise-homogeneous ageing of the 
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foundation under consideration and is investigated in /ll/. 
In conclusion, we note that a close connection exists between the contact problems for a 

composite viscoelastic foundations and the contact problems for linearly deformable foundations 
in the presence of abrasive wear /8, 15/. The same kind of integral equations as (1.3) or 
(1.6) occurs in investigation of the latter. 

The author is grateful to N.KH. Arutyunyan and V.M. Aleksandrov for their interest. 

REFERENCES 

1. ALEKSANDROV V-M., KOVALENKO E.V. and MARCHENKO S.M., On two contact problems of elasticity 
theory for a layer with Winkler-type coating, Prikl. Mekhan., Vo1.19, No:lO, 1983. 

2. ARDTYUNYAN N.KH., Certain Questions of Creep Theory. Gostekhizdat, Moscow-Leningrad, 1952. 
3. ARUTYDNYAN N.KH., Certain problems of creep theory of inhomogeneously ageing bodies, Isv., 

Akad. Nauk SSSR, Mekhan.', Tverd. Tela, No.3, 1976. 
4. KOVALENKO E.V. and TEPLYI M.I., Contact problems for a non-linear wear law for bodies with 

coatings, I.Trenie i Isnos, Vo1.4, No.3, 1983. 
5. ALEKSANDROV V.M. and MKHITARYAN S.M., Contact Problems for Bodies with Thin Coatings and 

Gaskets, Nauka, Moscow, 1983. 
6. VOROVICH I.I., ALEKSANDROV V.M. and BABESHKO V-A., Non-classical Mixed Problems of Elasticity 

Theory, Nauka, Moscow, 1974. 

7. MIREOYAN S.E. and MKHITARYAN S-M., On certain problems of contact interaction between 
infinite stringers and strips taking inhomogeneity in the material ageing into account, 
Izv. Akad. Nauk ArmSSR, Mekhanika, Vo1.34, No.5, 1981. 

8. ALEKSANDROV V.M. and KOVALENKO E.V., Axisymmetric contact problem for a linearly deformable 
foundation of general type in the presenceofwear. Izd.Akad.Nauk SSSR Mekhan.Tverd No.5,1978 

9. ALEKSANDROV V.M. and KOVAIENKO E.V., On a class of integral equations of mixed problems of 
the mechanics of continuous media, Dokl. Akad. Nauk SSSR, Vo1.252, No.2, 1980. 

10. KOVALENKO E.V., On the approximate solution of one type of integral equation of elasticity 
theory and mathematical physics, Izv. Akad. Nauk ArmSSR, Mekhanika, Vo1.34, No.5, 1981. 

11. KOVALENKO E.V. and MANWIROV A.V., Contact problem for a bilayer ageing viscoelastic 
foundation, PMM Vo1.46, No.4, 1982. 

12. KOVALENKO E.V. and TEPLYI M.I., Contact problems for a non-linear wear law of bodies with 
coatings, II. Trenie i Iznos, Vo1.4, No.4, 1983. 

13. MANZHIROV A.V., Axisymmetric contact problems for inhomogeneously ageing viscoelastic 
laminar foundations, PMM Vo1.47, No.4, 1983. 

14. RABOTNOV YU.N., Elements of the Hereditary Mechanics of Solids, Nauka, Moscow, 1977. 

15. ALEKSANDROV V.M.and KOVALENKO E.V., Plane contact problems of elasticity theory for non- 
classical domains in the presence of wear, Prikl. Mekhan. Tech. Fiz., No.3, 1980. 

Translated by M.D.F. 


