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THE SOLUTION OF CONTACT PRCBLEMS OF CREEP THEORY
FOR COMBINED AGEING FOUNDATIONS®

E.V. KOVALENKO

Solutions are presented of certain plane and axisymmetric contact problems
on the frictionless impression of a rigid stamp into a two-layered ageing
viscoelastic foundation. It is assumed that the upper layer is thin
relative to the contact domain, and inhomogeneously ageing. The rheological
properties of the lower layer are described by the equations of linear

creep theory for ageing materials. The layers are mutually rigidly adherent.
The contact domain does not change with time. Depending on the relationships
between the moduli of the instantaneous elastic strains of the layers, the
mixed problems reduce to integral eqguations of the first or second kinds
containing Fredholm and Volterra operators. An analytic method is proposed
for solving such equations which enables an expansion to be obtained for

the fundamental characteristics of the contact interaction for a force
varying with time in an arbitrary manner and acting on the stamp. Cases

are investigaged for the artificial and natural ageing of a two-layer
foundation.

1. We shall consider the problem using the example of axisymmetric problems, keeping in
mind that it is possible to transfer to plane analogues of these problems by the correspondence
principle /1/. Let a thin layer of thickness U <{y<(h (ha™1<€1) be rigidly adherent to a
surface layer of thickness H lying frictionless on a non-~deformable foundation (or connected
to it). We assume that a force P (f) is impressed without friction by a stamp of circular
planform on the upper boundary of such a composite medium. The surface of the stamp founda-
tion is given by the function g (r), while the contact domain is determined by the inequality
O0Lr<a.

We will describe the rheological properties of the two-layer foundation by the equations
of linear creep theory for ageing materials /2, 3/ (we ascribe the numbers rn =1, 2) to each
layer from the top down)
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Here ¢;;M (¢, r,2) and ;% (f, r, 32) are strain and stress tensor deviators, 3e™ (¢, r,z) is
the bulk strain, o (f, r,z) is the mean hydrostatic pressure, K, (, T) is the creep kernel
for the uniaxial state of stress, C(,(t, 1) is the creep measure, r and z are cylindrical
coordinates of points of the body, 7, is the time of load application, %, (z) is a function
of inhomogeneous ageing, —x;(z) =1, is the time of lower layer fabrication, E,and w, are the
elastic instantaneous strain modulus and Poisson's ratio. We note that since the properties
of the creep measure C, (t, 1), as well as the creep kernel K, (t,T) and the relaxation R,(t, 1)
(R, (t.T) is the resolvent of the kernel K, (f,1)) are elucidated in /2, 3/, we shall not du-
plicate them here. For simplicity in the subsequent considerations, we will merely assume
that the hereditary properties of the layer materials are identical, i.e.,

Gt V=Crt—~t V=9, Df(t —7) (n =1, 2) (1.1)
where @, (1) are functions taking account of the material ageing process and f(t —1t) their
hereditary properties.

Now using the relative smallness of the thickness of the upper layer (A =hal1<C1) we
consider certain relationships between the values of the layer instantaneous elastic strain
moduli.

Let

8,8, ~ A™ (const =m >0; A<€1; 0, =05E, (1 —v. 5% n =1, 2).
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Then taking the results in /4, 5/ and the correspondence principle /2/ in the calculation we
cbtain an integral equation in the contact pressurées ¢ {r, t) not known under the stamp.
Inserting dimensionless variables and the notation
p* =pa™l, r* = ra”t, * = 7,7, T = 17,2 (1.2
)= B) T g, ) =g (r, )8 8% (%) =6 (1) a7t
g* (M) =gMa™, h=Ha™", ¢ =05A08"(1 —2v) ({1 ~v)7
Ca* (%, ©*) = E,C, (t, 7), P (t) (a0,)* = N (¢*)

{we will omit the asterisk later), we write it in the form

i
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Here 6 (f) is the rigid displacement of the stamp, J,(u) is the Bessel function, and the
form of the function L {(u)is presented in /6/ for the cases of rigid clamping of the lower face
of the second layer or its smooth contact with the non-deformable base.
The guasistatic condition

1
N (ty=2x {pq(p, ) dp (1.3)
¢

must be appended to (1.3).

We now assume that A8,8, = D (D == const, A< 1), i.e., the instantaneous stiffness of
the upper layer is greater than the instantaneous stiffness of the lower layer. 1In this case,
a thin layer will work as an inhomogeneously-ageing cover /7/. If it is later assumed that
the constant D is sufficiently small, then by changing to dimensionless variables and the
notation (1.2), we obtain

1 t

Ve nyok (4, 1)do—{ Katt— o 1—m)ar x (1.6)
’ 1
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9

O<r <1 1<IKT <o0)

Therefore, we have arrived at a contact problem for a homogeneously-ageing viscoelastic
layer.

2. We describe the method of solving integral equations (1.3) and (1.6) under the
assumption that the force N (t) pressing the stamp to the foundation varies with time as

N () = Noo + Ny (8) (N = const; Ny () — 0, t = c0) 2.4y

We initially consider (1.3) and go over to its equivalent integral equation in conformity
with the scheme elucidated in /8—10/:
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We seek the solution of (2.2) in the form /9—-11/
1

g )=o)+ 9 - ), N=2n{pge () dp (2.4)
]

8(t) =64 8.A () + 6, (2) (2.5)

Then, taking account of (1.1) and (1.3) and the properties of the creep measure C, (t, 1)

/2, 3/, we obtain
AR)=Ci(t, 1), A()=0,C1(t, 7) =T, (0f (t —1) (2.6)
h
n@=1lacrue)d r=-8l-n
0
1
oae )+ F( 0u o) ok (5, 5-)dp =02 <) @7
0
(2.8)

f =0, () =8, (1) r <1, 0T

The relationship between the constants &8s and N« is found according to the second

condition in (2.4) after solving integral equation (2.7) /1/.

We now require that
Ix (r, t) = q, (&) + ¢, (r, t) (2~9)

$og:(0, do =0, 2n{pq ) dp=ng: ) =N, (1)
0 [}

in conformity with the quasi-equilibrium condition (1.5) and the representation (2.1).

Now, if the expression

1
Elq:(t)— a1 (1)), S (0 t)— g2 (p» 1)1 0B () dp

>-|m

1 t
Be=2(t gk (5, )et. -ESq;(t)Kg(t—rg,r—rg)dr
i ° 1 !
SK2 (t—12 T—Ta) dTS‘]z (0, ) pB (p) dp
1 ¢
(E is as yet an undefined constant),

is added to and subtracted from the left side of (2.8)
g, () and g, (r, £) will,

then the integral equation (2.8) will be satisfied when the functions
respectively, yield the scolutions of the equations

b2
(¢ — EY[q(t) —q: (1)] —Cgm (K1t 1) dt=35,(t)— 8, (1) — (2.10)
1
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0
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hir, ) (r-Z1, 0LtCTH '
I ty=eME—=22B()), e =g (—q (1) — (g1 () Kz (t — 10 T— Tg)dT
1
ke (o/h. r'h) =k (o/h, T/R) —~ B (0) — B (r) (2.12)

We note that the kernel £A°(z.p) of the form (2.12) is symmetric and possesses the

property that
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We introduce into the consideration the space L, (Q) of functions that are square
integrable in the circle 2:r<{1! and satisfying the condition

1
(‘.. Ay = () 19 44\
K dr == 0 (2.14)
L]
It can be proved that the space L,”(Q) is a complete subspace of L, (Q).
Theorem 1. The integral operator
1
={q (p)pk°(-‘3-. -+ )dp (2.15)
g AToAy

is a selfadjoint, completely continuocus and positive operator acting from L,° () into L,° (Q).
Theorem 1 is proved by the scheme in /1/.
Furthexmore, we construct a system of eigenfunctions {h,(r)} (r >>1) and its corresponding
sequence of eigennumbers {p.,,} of the operator (2.13) by the methods described in /1, 10/
By virtue of Theorem 1 +h svetam ig orthonormal and comnlats in O (O kA o1 > 0 where
VirTue «a2irien S¥ystiem L8 orinencrmal ana Compiete in ug eaj ANU &ii Hy & U, wgre
Hn— 0 (n ~» o).
Selecting the constant F in the second relationship in (2.11) in such a manner that a
ndition of the type {2.l4) would be satisfied, i.e., & \l, L}:Uz \M; in r, we represent

the functions ¢, (r,t) and h(r,¢) in the form of the following series:
nln b= RZX an(t) B (r) (2.16)

o0 1
) =el) Do),  en=— S orha )k (4, 4-)dodr (2.17)
Q9

S

Then inserting (2.16) and (2.17) into the integral equation (2.11), and equating
coefficients of the left and right sides for eigenfunctions of identical number for the operator
H in the relationship obtained, we arrive at the equation

£

@ = {an (@ M DT =) + — el (A<E<T)

My (@, 1) = (c + p)™ K, (2, T) + Ky (t — Ty T = Ty)]

whose solution is representable in the form

an(t) =an (1) [1 + Stl’,.(t. 1) dr] + [e) + 5 e(¥) Tn (t 1) d7 (2.18)
B 1 1

where I, (f, t) is the resolvent of the kernel M, (t, 1) /2/.

Now, using formulas (2.9), (2.10}, (2.16) and (2.18), we find the unknown addition, under
the stamp, to the settling of the foundation &, () and the function ¢, {r.?) to an accuracy
of a countable set of constants g, (1). We determine the latter by substituting the contact
stresses g{r,1} into the integral eqguation (2.3} (the question of the solvability of the
integral equation (2.3), just as of (2,7), is investigated in /1/) and by executing the
following manipulation. We supplement the system {#, (")} (r>>1) of eigenfunctions of the

amaratar Ha (D 18) hy ke alomant b (9] o v ‘) Then the seguence of functions §h, (" WV (n > O
aperator Hg («.i3) DY the e.ement 72y (") Then th € sequence ©f runctions Vin N (R = U)

will be orthonormal and complete in the space L, (). We expand the functions g (r), B (r), ¢ (r)
belonging to L, (Q)in series in the system

gir)= fg}o Euhn () Bir)= ’g-o bahin () (2.19)

g (F) == 3 Gnhin (r)
Pizal)

Series (2.19)converge in the norm, at least, of the space L, (Q), and the corresponding
coefficients belong to the space of guadratically summable sequences [, and are determined
by using the orthonormalcy conditions for the functions {h, ()} (> 0) We find from (2.1),
{2.4), (2.9) and (2.16) I
gr =Y X h,(r)y Xe==—— N(1) (2.20)

?-J . VT

X, = d, <

“a Qn Ia

1) (1)
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Taking account of the expansions (2.19) and (2.20), and the orthogonality condition for
the system of functions {h, (r)} (n > 0) we obtain from (2.3)

Xpm= (¢ + pa) (€0 + Xobol VD) (2.24)
= (¥ Z ¢+ by 5(1) -ngx Xobo—VZ 2]

It was here also taken into account that {h, (r)} (n >> 1) are eigenfunctions of the operator
(2.15) and satisfy condition (2.14). Now, we find the system of constants a, (1) from the
first relationship of (2.12) and (2.20). We later Getermine §,{t) from (2.10) and the con-
stant & in {2.5) from the second equation in (2.21).

Theorem 2. The series {2.16) converges uniformly in L,°(Q) in t in {4, T}, while (2.4),
(2.9} and {2.16) determine the generalized solution of (1.3) and (1.4).
Wwithout presenting the proof of Theorem 2, we note that it is analogous to that constructed

in /11/.
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We note that the solutions of the integral equations (3.1)—(3.3) already have a singular-
ity of square root type at the edge of the contact line (r=1) /6/, unlike the preceding
case, consequently, it is best to perform further discussion according to the following plan,
8ince the kernel X°({g, B) (2.12) is symmetric and the eguation

...... Lne exrne £ L&, P t£eas)

1
@ (p, 1)pr e r ___W(r, t)
g S Vi =7 G(T’ T)dpdra-—-.—(), Galr = Y2 war= o

o ¥ ° ¥

is satisfied (compare with (2.13)), we 1ntroduce the space Lg i, (Q) of functions summable
square in the domain  and of weight (¢ -r’"'/’ whose integral over § is zero. It can be
shown that L, ., (@) is a complete subspace of the Hilbert space Ly s, (Q) that is sguare

mtegrable with weight (1 ~—7%™" in the domain § of functions. Moreover, as above we have

R T S et

/’.L," e .LU..L.J.UWJ.IIE HICULCEH.

Theorem 3. The operator He 2458L ¢ = e (r)/lfi — is a selfadjoint, completely
continuous, and positive-definite operatoxr acting in the Hzlbert space L., 1, (Q).

As is shown in /10/, we now construct a system of eigenfunctions {h, (r)} (r>1) and its
corresponding sequence of eigennumbers {n,} of the operator H by taking V4 + 1 Py (V1 -1
(P; (r are Legendre pclyncmials}. Since by virtue of Theorem 3 the system {k, (r)} is ortho-
normal and complete in L2 y, {Q) while >0, g, — 0 (n = =), then further solution of the
problem reproduces the discussion in Sect.2 with appropriate evident modifications.

Furthermore, we turn our attention to one circumstance. To write down the integral
equations of plane analogues of the problems studied, it is necessary to use the following
correspondence principle /1, 6, 12/. If the kernel of a Fredholm integral equation of the
axisymmetric contact problem represented in the form (1.4) is known, then the Fredholm kernel

of the corresponding plane problem has the form
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z .
3 L{yu*cosuydu, y=- T < (3.4)

L (o) 1
Ky =—

Cerag

The quasistatics conditions (1.5) is here transformed into the following:

1 1
No(t) = S gz, tydz, Ni()=Ny(t)e(t)= S zq(z, t) dzx (3.5)
-1 -1
which serve to determine the relationships between N, (¢) and 8 (¢), a (t) and
and a(f) are, respectively, the eccentricity of application of the force N, (¢
angle of rotation of the stamp.

As regards the solutions of the integral equations (1.3), (1.6), (3.4), (3.5), the methods
elucidated in Sects.2 and 3 are applicable. It must just be kept in mind that in finding
1842 MUSL JUST o8 ROpT 1n mind Thadt 1n Tinding

the eigenfunctions of the operator

P
as

1
r ¢ jov (B~
Hy= Yy ¢k ({5—)
-1
by the method in /10/, a system of orthonormal Legendre polynomials must be taken as coordinate
elements in the first case, and Chebyshev polynomials of the first kind in the second.

4. we will analyse (1.3)~(1.5) numerically. Let

Py [T+ % (2)] = 4y + Ay exp {—P [t + % (9]}
Then in agreement with (2.6)
A
Fr(t) = Ao+ e, = -—il;- S ePu@ gz
0

We assume %,(z) >0, i.e., the age of the upper layer grows with height, as occurs if
the layer is subjected to the influence of external effects (radiation, temperature, etc.),
namely artificial ageing. In this case 0<u<{t. If —1<#% (<0 i.e., the age of the thin
layer diminishes with height which is natural ageing, and which corresponds to the process
of raising the upper layer on the lower, then 1< p<¢" Therefore, by changing the parameter

u within the mentioned limits, the solution of the problem posed can be constructed for any

functions x;(z). Moreover, we note that the selection of the time origin can be made available
so that 1, =0.

Numerical computations were performed for the case when ¢ (r)=0 (the stamp has a flat
base) ;

N@)=1;A=06c=02; 4= 055224, = 4; f(t — 1) = 1 — V¥ D L (u) = (ch 2u — 1)(sh 2u + 2u)"!

(values of the parameters f§, y and 1, were taken from /13/) and compared with those from
/13/ in which the integral equation being investigaged (1.3)-(1.5) was solved by the methods
described in /9-11/. Results of the comparison showed agreement between the numerical values
of the fundamental characteristics of the problem under consideration with an error not
exceeding 3%.

Let us recall certain mechanical deductions.

When t¢t=1 and for any value of the parameter p the foundation will be an elastic
layer bonded along the upper boundary by an elastic coating of Winkler type /5/. The minimal
values of the contact pressures (for r=0) will here be less than those in the case of
natural ageing, and greater in the case of artificial ageing, while the maximum values (for
r=1) will be the reverse, less than the contact stresses for the case of artificial ageing,
and greater in the case of natural ageing.

As the natural inhomogeneity grows (as the parameter u grows), the maximum contact
pressures will diminish while the minimum pressures increase.

As the artificial inhomogeneity grows, which corresponds to a decrease in the parameter

p from 1 to O, the maximum contact pressures will rise while the minimum pressures will
decrease.

Settling of the foundation under the stamp §(# with time will grow and tend to the limit
value which will be greater, the larger the parameter p.

If the inhomogeneity parameter is p--1 and the layers are fabricated from the very
same material, while the force acting on the stamp from the flat foundation is independent
of time, we obtain that the pressure distribution under the stamp will be the same as in the
analogous elastic problem, i.e., in this case creep exerts no influence on the contact stress
distribution.

Let p=-0. Then the upper layer will work on a type of foundation whose rheological
properties are subject to the Volterra linear heredity law /14/.

The version p =’ corresponds to the case of piecewise-homogeneous ageing of the
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foundation under consideration and is investigated in /11/.

In conclusion, we note that a close connection exists between the contact problems for a
composite viscoelastic foundations and the contact problems for linearly deformable foundations
in the presence of abrasive wear /8, 15/. The same kind of integral equations as (1.3) or
(1.6) occurs in investigation of the latter.

The author is grateful to N.KH. Arutyunyan and V.M. Aleksandrov for their interest.
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